Sheet 2 - solution

1 A lossless transmission line is terminated with a 100Ω load. If the SWR on the line is 1.5, find the two possible values for the characteristic impedance of the line.

$$
\begin{aligned}
& |r|=\frac{S-1}{S+1}=\frac{0.5}{2.5}=0.2 \\
& |r|=\left|\frac{z_{L}-z_{0}}{z_{L}+z_{0}}\right|=\left|\frac{100-z_{0}}{100+z_{0}}\right| \quad\left(z_{0} \text { real }\right)
\end{aligned}
$$

So either,

$$
\frac{100-z_{0}}{100+z_{0}}=0.2 \Rightarrow z_{0}=z_{L} \frac{1-\Gamma}{1+\Gamma}=100\left(\frac{18}{1.2}\right)=66.7 \Omega
$$

σ

$$
\frac{100-z_{0}}{100+z_{0}}=-0.2 \Rightarrow z_{0}=z_{L} \frac{1-\Gamma}{1+\Gamma}=100\left(\frac{1.2}{.8}\right)=150 \Omega
$$

2 Let $Z_{s c}$ be the input impedance of a length of coaxial line when one end is shortcircuited and let $Z_{o c}$ be the input impedance of the line when one end is opencircuited. Derive an expression for the characteristic impedance of the cable in terms of $Z_{s c}$ and $Z_{o c}$.

$$
\begin{array}{ll}
z_{S C}=j z_{0} \tan \beta l & , z_{O C}=-j z_{0} \cot \beta l \\
z_{S C} \cdot z_{O C}=z_{0}^{2} \Rightarrow & z_{0}=\sqrt{z_{S C} z_{O C}}
\end{array}
$$

3 A 100Ω transmission line has an effective dielectric constant of 1.65. Find the shortest open-circuited length of this line that appears at its input as a capacitor of 5 pF at 2.5 GHz . Repeat for an inductance of 5 nH .

$$
\begin{gathered}
C: \quad Z_{o c}=-j / \omega c=-j 12.73 \Omega=-j z_{0} \cot \beta l \quad c=5 \rho F \\
\tan \beta l=100 / 12.73 \Rightarrow \beta l=82.74^{\circ} \mathrm{V} \\
\lambda_{0}=0.12 \mathrm{~m}, \beta=2 \pi \sqrt{\epsilon e} / \lambda_{0}=38540 / \mathrm{m} \Rightarrow l=2.147 \mathrm{~cm} \\
L: \quad Z_{0 c}=j \omega L=+j 78.5 \Omega=-j z_{0} \cot \beta l \quad L=5 \mathrm{nH} \\
\tan \beta l=-100 / 78.5 \Rightarrow \beta l=128.1^{\circ} \mathrm{V} \Rightarrow l=3.324 \mathrm{~cm}
\end{gathered}
$$

These results were verified with Serenade.

4 A radio transmitter is connected to an antenna having an impedance $80+\mathrm{j} 40 \Omega$ with a 50Ω coaxial cable. If the 50Ω transmitter can deliver 30 W when connected to a 50Ω load, how much power is delivered to the antenna?

$$
\begin{aligned}
& \Gamma=\frac{z_{L-}-z_{0}}{z_{L}+z_{0}}=\frac{30+j 40}{130+j 40}=\frac{50153^{\circ}}{136 / 17^{\circ}}=0.367 \angle 36^{\circ} \\
& P_{L O A D}=P_{I N C}-P_{R E F}=P_{I N C}\left(1-|\Gamma|^{2}\right)=30\left[1-(.367)^{2}\right]=25.9 \mathrm{~W}
\end{aligned}
$$

5 The transmission line circuit shown below has $\mathrm{V}_{\mathrm{g}}=15 \mathrm{Vrms}, \mathrm{Z}_{\mathrm{g}}=75 \Omega, \mathrm{Z}_{\mathrm{o}}=75 \Omega, \mathrm{Z}_{\mathrm{L}}=$ $60-\mathrm{j} 40 \Omega$, and $\ell=0.7 \lambda$. Compute the power delivered to the load using three different techniques:
(a) find Γ and compute

$$
P_{L}=\left(\frac{V_{g}}{2}\right)^{2} \frac{1}{Z_{0}}\left(1-|\Gamma|^{2}\right) ;
$$

$$
V_{g}=15 \mathrm{v} \mathrm{Rm} \mathrm{~s}, \quad Z_{g}=75 \Omega, \quad Z_{0}=75 \Omega, \quad z_{L}=60-j 40 \Omega, l=0.7 \lambda .
$$

a)

$$
\begin{aligned}
& \Gamma=\frac{z_{1}-z_{0}}{z_{L}+z_{0}}=\frac{-15-j 40}{135-j 40}=\frac{42.7 /-10.5^{\circ}}{140.8 / 16.5^{\circ}}=0.303 /-94^{\circ}=-0.021-j 0.302 \\
& P_{L}=\left(\frac{V_{g}}{2}\right)^{2} \frac{1}{z_{0}}\left(1-1 r 1^{2}\right)=0.681 \mathrm{~W}
\end{aligned}
$$

This method is actually based on $P_{L}=P_{\text {inc }}\left(1-|\Gamma|^{2}\right), \alpha+i s$ the simplest method, but only applies to locales lines.
(b) find $Z_{\text {in }}$ and compute

$$
P_{L}=\left|\frac{V_{g}}{Z_{g}+Z_{\text {in }}}\right|^{2} \operatorname{Re}\left(Z_{\text {in }}\right) ; \text { and }
$$

b) $z_{\text {in }}=z_{0} \frac{z_{L}+j z_{0} \tan \beta l}{z_{0}+j z_{L} \tan \beta l}=75 \frac{60+j 190.8}{198.1+j 184.7}=75 \frac{200 / 72.5^{\circ}}{270.8143^{\circ}}$

$$
=55.4 \angle 29.5^{\circ}=48.2+j 27.3 \Omega
$$

$$
P_{L}=\left|\frac{V_{g}}{z_{g}+z_{i n}}\right|^{2} R_{e}\left(z_{i n}\right)=\left|\frac{15}{123.2+j 27.3}\right|^{2}(48.2)=0.681 \mathrm{wr}
$$

This method computes $P_{L}=P_{\text {in }}=\left|I_{i n}\right|^{2} R_{i n}$, and also agghlies only to looses lines.
(c) find V_{L} and compute

$$
P_{L}=\left|\frac{V_{L}}{Z_{L}}\right|^{2} \operatorname{Re}\left(Z_{L}\right) .
$$

$$
\begin{aligned}
V(z) & =V^{+}\left(e^{-j \beta z}+\Gamma e^{j \beta z}\right) \\
V_{L} & =V(0)=V^{+}(1+\Gamma) \quad V^{+}=\frac{V_{g}}{2}=7.5 v \\
& =7.5(1-.021-j .302) \\
& =7.68 \frac{1-17^{0}}{} \\
P_{L} & =\left|\frac{V_{L}}{z_{L}}\right|^{2} \operatorname{Re}\left(z_{L}\right)=\left(\frac{7.68}{72.1}\right)^{2}(60)=0.681 \mathrm{w}
\end{aligned}
$$

(d) Discuss the rationale for each of these methods. Which of these methods can be used if the line is not lossless?

This method computes $P_{L}=\left|I_{L}\right|^{2} R_{L}$, and applies to lossy as well as lossless hines. Note the concept that $v^{+}=V_{g} / 2$ requires a good understanding of the transmission line equations, and only applies here because $z_{g}=z_{0}$.

6 For a purely reactive load impedance of the form $\mathrm{Z}_{\mathrm{L}}=\mathrm{jX}$, show that the reflection coefficient magnitude If $I \Gamma I$ is always unity. Assume the characteristic impedance Z_{0} is real.

$$
\begin{aligned}
& z_{L}=j x \\
& \Gamma=\frac{z_{L}-z_{0}}{z_{L}+z_{0}}=\frac{j x-z_{0}}{j x+z_{0}} \\
& |\Gamma|^{2}=\Gamma \Gamma^{*}=\frac{\left(j x-z_{0}\right)}{\left(j x+z_{0}\right)} \frac{\left(-j x-z_{0}\right)}{\left(-j x+z_{0}\right)}=\frac{x^{2}-j z_{0} x+j z_{0} x+z_{0}^{2}}{x^{2}+z_{0}^{2}}=1 \mathrm{~V}
\end{aligned}
$$

7 Consider the transmission line circuit shown below. Compute the incident power, the reflected power, and the power transmitted into the infinite 75Ω line. Show that power conservation is satisfied.

POWER DELVERED BY SOURCE $=\frac{1}{2} \frac{(10)^{2}}{50+75}=0.400 \mathrm{~W}$
Power DISSIPATED in 50 LO LOAD $=\frac{1}{2}(50)\left(\frac{10}{50+75}\right)^{2}=0.160 \mathrm{w}$
POWER TRANSMITTED DOWN LINE $=\frac{1}{2}(75)\left(\frac{10}{50+75}\right)^{2}=0.240 \mathrm{~W}$
INCIDENT POWER $=\frac{1}{2}(50)\left(\frac{10}{50+50}\right)^{2}=0.250 \mathrm{~W} \quad \checkmark$
REFLECTED POWER $=P_{\text {INC }}|\Gamma|^{2}=.250\left|\frac{75-50}{75+50}\right|^{2}=0.010 \mathrm{~W} \quad \checkmark$
— $P_{I N C}-P_{\text {REF }}=.250-.010=0.240=P_{\text {TRANS }}$
$P_{\text {DISS }}+P_{\text {TRANS }}=.160+.240=0.400=P_{\text {SOURCE }}$

8 A generator is connected to a transmission line as shown below. Find the voltage as a function of z along the transmission line. Plot the magnitude of this voltage for
$-\ell \leq \mathrm{Z} \leq 0$

$$
\begin{aligned}
& \Gamma=\frac{-20-j 40}{180-j 40}=\frac{44.7 L-116.6^{\circ}}{184.4 L-12.5^{\circ}}=0.24 L-104^{\circ} \\
& V_{L}=10 \frac{80-j 40}{180-j 40}=10 \frac{89.4 L-26^{\circ}}{184 L^{\circ}}=4.058-j 0.233 \\
& V(z)=V^{+}\left[e^{-j \beta z}+\Gamma e^{j \beta}\right] \quad V^{+}=10 \frac{100}{100+100}=5 v
\end{aligned}
$$

So

$$
\begin{aligned}
& V(z)=5\left[e^{-j z}+\Gamma p j \beta\right] \\
& V_{\text {MAX }}=5(1+|\Gamma|)=5(1.24)=6.2 \text { at } z=-0.355 \lambda \\
& V_{\text {MIN }}=5(|-|\Gamma|)=5(.76)=3.8 \text { at } z=-0.105 \lambda
\end{aligned}
$$

These results repeat evens $\lambda / 2$.
$|V(z)|$ is plotted below

Good Luck
Dr. Gehan Semi

